
new/usr/src/lib/libc/i386/gen/makectxt.c 1

**
 3629 Fri Dec 18 13:15:27 2015
new/usr/src/lib/libc/i386/gen/makectxt.c
patch feedback
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1988 AT&T */
28 /* All Rights Reserved */

30 #pragma weak _makecontext = makecontext

32 #include "lint.h"
33 #include <stdarg.h>
34 #include <ucontext.h>
35 #include <sys/stack.h>

37 /*
38 * The ucontext_t that the user passes in must have been primed with a
39 * call to getcontext(2), have the uc_stack member set to reflect the
40 * stack which this context will use, and have the uc_link member set
41 * to the context which should be resumed when this context returns.
42 * When makecontext() returns, the ucontext_t will be set to run the
43 * given function with the given parameters on the stack specified by
44 * uc_stack, and which will return to the ucontext_t specified by uc_link.
45 */

47 /*
48 * The original i386 ABI said that the stack pointer need be only 4-byte
49 * aligned before a function call (STACK_ALIGN == 4). The ABI supplement
50 * version 1.0 changed the required alignment to 16-byte for the benefit of
51 * floating point code compiled using sse2. The compiler assumes this
52 * alignment and maintains it for calls it generates. If the stack is
53 * initially properly aligned, it will continue to be so aligned. If it is
54 * not initially so aligned, it will never become so aligned.
52 * alignment and maintains it for calls made from that function. If the
53 * stack is initially properly aligned, it will continue to be so aligned.
54 * If it is not initially so aligned, it will never become so aligned.
55 *
56 * One slightly confusing detail to keep in mind is that the 16-byte
57 * alignment (%esp & 0xf == 0) is true just *before* the call instruction.
58 * The call instruction will then push a return value, decrementing %esp by

new/usr/src/lib/libc/i386/gen/makectxt.c 2

59 * 4. Therefore, if one dumps %esp at the at the very first instruction in
60 * a function, it will end with a 0xc. The compiler expects this and
61 * compensates for it properly.
62 *
63 * Note: If you change this value, you need to change it in the following
64 * files as well:
65 *
66 * - lib/libc/i386/threads/machdep.c
67 * - lib/common/i386/crti.s
68 * - lib/common/i386/crt1.s
69 */
70 #undef STACK_ALIGN
71 #define STACK_ALIGN 16

73 static void resumecontext(void);

75 void
76 makecontext(ucontext_t *ucp, void (*func)(), int argc, ...)
77 {
78 long *sp;
79 long *tsp;
80 va_list ap;
81 size_t size;

83 ucp->uc_mcontext.gregs[EIP] = (greg_t)func;

85 size = sizeof (long) * (argc + 1);

87 tsp = (long *)(((uintptr_t)ucp->uc_stack.ss_sp +
88 ucp->uc_stack.ss_size - size) & ~(STACK_ALIGN - 1));

90 /*
91 * Since we’re emulating the call instruction, we must push the
92 * return address (which involves adjusting the stack pointer to
93 * have the proper 4-byte bias).
94 */
95 #endif /* ! codereview */
96 sp = tsp - 1;

98 *sp = (long)resumecontext; /* return address */

100 ucp->uc_mcontext.gregs[UESP] = (greg_t)sp;

102 /*
103 * "push" all the arguments
104 */
105 #endif /* ! codereview */
106 va_start(ap, argc);
107 while (argc-- > 0)

91 while (argc-- > 0) {
108 *tsp++ = va_arg(ap, long);
93 }

109 va_end(ap);

97 *sp = (long)resumecontext; /* return address */

99 ucp->uc_mcontext.gregs[UESP] = (greg_t)sp;
110 }

______unchanged_portion_omitted_

