new usr/src/ uts/comon/ vni page. h

R R R R

49002 Fri Feb 27 16:32:49 2015
new usr/src/ uts/comon/ vni page. h
vm be careful about enpty statenents

R R R R

69
70
71
72
73

113

117
118
119
120
121
122
123
124

__unchanged_portion_onitted_

/*

* Callers of page_try_reclaimlock and page_l ock_es can use this flag
* to get SE_EXCL access before reader/witers are given access.

*/

#define SE_EXCL_WANTED 0x02

/*

* Al page_*lock() requests will be denied unless this flag is set in
* the "es’ paraneter.

*

#def i ne SE_RETI RED 0x04

#endi f /* _KERNEL | _KMEMUSER */

typedef int sel ock_t;

/*

* Define VM STATS to turn on all sorts of statistic gathering about

* the VM| ayer.
* al so defined.
*/

#i f def DEBUG
#def i ne VM_STATS
#endi f /* DEBUG */

By default, it is only turned on when DEBUG is

#i fdef VM _STATS

#define VM STAT_ADD(st at) (stat)++

#define VM_STAT_COND ADD(cond, stat) ((void) (!(cond) || (stat)++))
#el se

#def i ne VM _STAT_ADD(st at) do { } while (0)

#defi ne VM_STAT_COND ADD(cond, stat) do { } while (0)

#defi ne VM _STAT_ADD(st at)

#defi ne VM_STAT_COND_ADD(cond, stat)

#endif /* VM _STATS */

#i fdef _KERNEL

/*

* PAGE_LLOCK SIZE is 2 * NCPU, but no snmaller than 128.

* PAGE_LLOCK_SHI FT is | 0g2(PAGE_LLOCK_ Sl ZE) .

*

* W use ? : instead of #i f because <vnipage.h> is included everywhere;
* NCPU_P2 is only a constant in the "unix" nodul e.

*

*

#define PAGE_LLOCK_SHI FT \
((unsi gned) (((2*NCPU_P2) > 128) ? NCPU_LOR + 1 : 7))

#define PAGE_LLOCK_SI ZE (1ul << PAGE_LLOCK_SHI FT)

/*
* The nunber of low order O (or less variable) bits in the page_t address.

/
#i f defined(

__sparc)
#define PP_SH FT 7
#el se
#define PP_SH FT 6
#endi f

126
127
128
129
130
131
132
133
134
135
136

new usr/ src/ uts/ common/ v page. h 2

/*

* pp may be the root of a | arge page, and many |ow order bits will be O.

* Shift and XOR nultiple tinmes to capture the good bits across the range of

* possi bl e page sizes.

#def i ne PAGE_LLOCK_HASH(pp) \
((((Cuintptr_t)(pp) >> PP_SH FT) ™\
((uintptr_t)(pp) >> (PAGE_LLOCK_SHIFT + PP_SHIFT))) ~ \
((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 2) + PP_SHIFT)) ~ \
((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 3) + PP_SH FT))) &\
(PAGE_LLOCK_SI ZE - 1))

#def i ne page_struct _| ock(p

138
139
140
141

143
145
147

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

p)
mut ex_ent er (&page_| I | ocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))] . pad_nut ex)

#defi ne page_struct_unl ock(pp) \

mut ex_exi t (&page_| | ocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))] . pad_nut ex)
#endi f /* _KERNEL */
#i ncl ude <sys/t_l ock. h>

struct as;

/*

* Each physical page has a page structure, which is used to maintain

* these pages as a cache. A page can be found via a hashed | ookup

* based on the [vp, offset]. |If a page has an [vp, offset] identity,

* then it is entered on a doubly linked circular Iist off the

* vnode using the vpnext/vpprev pointers. If the p_free bit

* is on, then the page is also on a doubly |'i nked circul ar free

* list using next/prev pointers. |f the "p_selock" and "p_iol ock"

* are held, then the page is currently being read in (exclusive p_sel ock)

* or witten back (shared p_selock). In this case, the next/prev pointers
* are used to link the pages together for a consecutive i/o request. If

* the page is being brought in fromits backing store, then other processes
*will wait for the i/o to conpl ete before attaching to the page since it

* will have an "exclusive" |ock.

*

* Each page structure has the | ocks described bel ow al ong with

* the fields they protect:

*

* p_sel ock This is a per-page shared/exclusive lock that is

* used to inplenment the |ogical shared/exclusive

* I ock for each page. The "shared | ock |s normal |y

* used in nost cases while the "exclusive" lock is

* required to destroy or retain exclusive access to

* a page (e.g., while reading in pages). The appropriate
* lock is always held whenever there is any reference
* to a page structure (e.g., during i/o).

* (Note that with the addition of the "witer-Iock-wanted"
* semantics (via SE_EWANTED), threads nust not acquire
* mul tiple reader | ocks or else a deadly enbrace will

* occur in the following situation: thread 1 obtains a
* reader lock; next thread 2 fails to get a witer lock
* but specified SE_EWANTED so it will wait by either

* bl ocki ng (when using page_| ock_es) or spinning while
* retrying (when using page_try_reclaimlock) until the
* reader lock is released; then thread 1 attenpts to

* get another reader |ock but is denied due to

* SE_EWANTED bei ng set, and now both threads are in a
* deadl y enbrace.)

*

* p_hash

* p_vnode

* p_of f set

*

new usr/src/ uts/comon/ vni page. h

192 * p_free

104 + P-age

195 * p_i ol ock This is a binary semaphore | ock that provides

196 * excl usive access to the i/o list links in each
197 * page structure. It |s al ways held while the page
198 * isonani/olist (i.e., |nvolvedini/o). That is,
199 * even though a page may be only ‘shared | ocked
200 * while it is doing a wite, the follow ng fields my
201 * change anyway. Nornally, the page nust be

202 * ‘exclusively |locked to change anything init.

203 *

204 * p_next

ggg : p_prev

207 * The following fields are protected by the global page_|locks[]:

208 *

209 * p_I ckent

210 * p_cowcnt

211 *

gl% * The following lists are protected by the global page_freel ock:

1 *

214 * page_cachel i st

215 * page_freelist

216 *

217 * The followi ng, for our purposes, are protected by

218 * the gl obal freemem.| ock:

219 *

220 * freemem

221 * freemem wait

222 * freenmemcv

223 *

224 * The following fields are protected by hat |ayer lock(s). Wen a page
225 * structure is not mapped and is not associated with a vnode (after a call
226 * to page_hashout() for exanple) the p_nrmfield may be nodified with out
227 * holding the hat layer I|ock:

228 *

229 * p_nrm

230 * p_mappi ng

231 * p_share

232 *

233 * The following field is file systemdependent. How it is used and

234 * the locking strategies applied are up to the individual file system
235 * inplenentation.

236 *

537 * p_fsdata

38 *

239 * The page structure is used to represent and control the systenis

240 * physical pages. There is one instance of the structure for each

241 * page that is not pernenately allocated. For exanple, the pages that
242 * hold the page structures are permanently held by the kernel

243 * and hence do not need page structures to track them The array

244 * of page structures is allocated early on in the kernel’s life and

245 * is based on the ampunt of avail abl e physical nenory.

246 *

247 * Each page structure nay sinultaneously appear on several |inked lists.
248 * The lists are: hash list, free or ini/o list, and a vnode' s page list.
249 * Each type of list is prot ected by a different group of nutexes as described
250 * bel ow

251 *

252 * The hash list is used to quickly find a page when the page’s vnode and
253 * offset within the vnode are known. Each page that is hashed is

254 * connected via the ‘p_hash’ field. The anchor for each hash is in the
255 * array ‘page_hash’. An array of mutexes, ‘ph_nmutex’, protects the

256 * lists anchored by page_hash[]. To either search or nmodify a given hash
257 * list, the appropriate nutex in the ph_nmutex array nust be held.

new usr/ src/ uts/comon/ vni page. h

258 *
259 * The free list contains pages that are ‘free to be given away’. For
260 * efficiency reasons, pages on this list are placed in two catagories:
261 * pages that are still associated with a vnode, and pages that are not
262 * associated with a vnode. Free pages always have their ‘p_free' bit set,
263 * free pages that are still associated with a vnode al so have their
264 * ‘p_age’ bit set. Pages on the free list are connected via their
265 * ‘p_next’ and ‘p_prev’ fields. Wen a page is involved in sone sort
266 * of i/o, it is not free and these fields may be used to |ink associated
267 * pages together. At the nonent, the free list is protected by a
268 * single nutex ‘page_freelock’. The list of free pages still associated
269 * with a vnode is anchored by ‘page_cachelist’ while other free pages
370 * are anchored in architecture dependent ways (to handl e page coloring etc.).
71 *
272 * Pages associated with a given vnode appear on a list anchored in the
273 * vnode by the ‘v_pages’ field. They are |inked toget her with
274 * ‘p_vpnext’ and ‘p_vpprev’'. The field ‘p_offset’ contains a page’'s
275 * offset within the vnode. The pages on this |list are not kept in
276 * offset order. These lists, in a manner simlar to the hash lists,
277 * are protected by an array of mutexes called ‘vph_hash’. Before
278 * searching or nodifying this chain the appropriate nmutex in the
279 * vph_hash[] array nust be held.
280 *
281 * Again, each of the lists that a page can appear on is protected by a
282 * mutex. Before reading or witing any of the fields conprising the
283 * list, the appropriate |ock nust be held. These list |locks should only
284 * be held for very short intervals.
285 *
286 * In addition to the list locks, each page structure contains a
287 * shared/exclusive |ock that protects various fields withinit.
288 * To nodify one of these fields, the ‘p_selock’ must be exclusively held.
289 * Toread a field with a degree of certainty, the lock nmust be at |east
290 * held shared.
291 *
292 * Renoving a page structure fromone of the lists requires hol ding
293 * the appropriate list lock and the page’s p_sel ock. A page may be
294 * prevented fromchanging identity, being freed, or otherw se nodified
ggg * by acquiring p_sel ock shared.

*
297 * To avoid deadl ocks, a strict |ocking protocol nmust be followed. Basically
298 * there are two cases: In the first case, the page structure in question
299 * is known ahead of time (e.g., when the page is to be added or renoved
300 * froma list). In the second case, the page structure is not known and
301 * nust be found by searching one of the lists.
302 *
303 * Wen adding or renobving a known page to one of the lists, first the
304 * page nust be exclusively locked (since at |east one of its fields
305 * will be nodified), second the lock protecting the Iist nmust be acquired,
ggg : third the page inserted or deleted, and finally the list |ock dropped.
308 * The nore interesting case occures when the particul ar page structure
309 * is not known ahead of tine. For exanple, when a call 1s made to
310 * page_l ookup(), it is not known if a page with the desired (vnode and
311 * offset pair) identity exists. So the appropriate nmutex in ph_nutex is
312 * acquired, the hash list searched, and if the desired page is found
313 * an attenpt is nade to lock it. The attenpt to acquire p_sel ock nust
314 * not block while the hash list lock is held. A deadl ock could occure
315 * if some other process was trying to renove the page fromthe |ist.
316 * The renoving process (follow ng the above protocol) would have exclusively
317 * | ocked the page, and be spinning waiting to acquire the |ock protecting
318 * the hash list. Since the searching process holds the hash list |ock
g%g : and is waiting to acquire the page |ock, a deadl ock occurs.
321 * The proper schene to followis: first, lock the appropriate |ist,
322 * search the list, and if the desired page is found either use
323 * page_trylock() (which will not block) or pass the address of the

new usr/src/ uts/comon/ vni page. h

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

B i T T T T T T

list lock to page_lock(). |If page_lock() can not acquire the page's
lock, it will drop the list |ock before going to sleep. page_lock()
returns a value to indicate if the list lock was dropped allowi ng the
calling programto react appropriately (i.e., retry the operation).

If the list |lock was dropped before the attenpt at |ocking the page
was made, checks would have to be made to ensure that the page had
not changed identity before its lock was obtained. This is because
the interval between dropping the list |ock and acquiring the page
lock is indeterminate.

In addition, when both a hash list lock (ph_nmutex[]) and a vnode Ii st
lock (vph_nutex[]) are needed, the hash Iist |ock nust be acquired first.
The routine page_hashin() is a good exanple of this sequence.

Thi s sequence i s ASSERTed by checking that the vph_nmutex[] is not held
just before each acquisition of one of the mutexs in ph_nmutex[].

So, as a quick sunmary:
pse_mutex[]'s protect the p_selock and p_cv fields.
p_sel ock protects the p_free, p_age, p_vnode, p_offset and p_hash,
ph_mutex[]’s protect the page_hash[] array and its chains.
vph_mutex[]’'s protect the v_pages field and the vp page chains.
First lock the page, then the hash chain, then the vnode chain. Wen

this is not possible ‘trylocks’ nust be used. Sl eeping while holding
any of these mutexes (p_selock is not a mutex) is not allowed.

field readi ng writing ordering

p_vnode p_sel ock(E, S) p_sel ock(E)

p_of f set

p_free

p_age

p_hash p_sel ock(E, S) p sel ock(E) && p_sel ock, ph_mutex
ph_nut ex[]

p_vpnext p_sel ock(E, S) p_sel ock(E) && p_sel ock, vph_nutex

p_vpprev vph_nut ex[]

Wien the p_free bit is set:

p_next p_sel ock(E, S) p_sel ock(E) && p_sel ock,

p_prev page_freel ock page_freel ock

When the p_free bit is not set:

p_next p_sel ock(E, S) p_sel ock(E) && p_sel ock, p_iolock
p_prev p_i ol ock
p_sel ock pse_mnut ex[] pse_nut ex[] can‘t acquire any
p_cv ot her nutexes or

sl eep while holding

this I ock.
p_I ckent p_sel ock(E, S) p_sel ock(E)

R
p_sel ock(S) &&
. page_| | ocks[]

p_cowcn

new usr/src/ uts/comon/ vni page. h

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

B i R I i i T T B I S

p_nrm hat layer |lock hat |ayer |ock
p_mappi ng
p_pagenum
wher e:
E----> exclusive version of p_sel ock.

S----> shared version of p_selock.

G obal data structures and vari abl e:
field readi ng writing ordering
page_hash[] ph_mut ex[] ph_nut ex[] can hold this |ock

before acquiring
a vph_mutex or
pse_nut ex.

vp- >v_pages vph_nut ex[] vph_nut ex[] can only acquire

a pse_mutex while
hol ding this | ock.

page_cachel i st
page_freelist

page_freel ock
page_freel ock

page_freel ock
page_freel ock

can’t acquire any

freemem
freemem wait
freememcv

freenem. | ock freemem | ock can’t acquire any
ot her mutexes while

hol di ng this mutex.

Page rel ocati on, PG NORELOC and P_NORELCC.

Pages may be rel ocated using the page_relocate() interface. Relocation
invol ves noving the contents and identity of a page to another, free page.
To relocate a page, the SE EXCL | ock nust be obtained. The way to prevent
a page frombeing relocated is to hold the SE_ SHARED | ock (the SE EXCL

I ock must not be held indefinitely). If the page is going to be held

SE _SHARED i ndefinitely, then the PG NORELOC hint should be passed

to page_create_va so that pages that are prevented from being rel ocated
can be managed differently by the platformspecific |ayer.

Pages | ocked in menory using page_pp_|l ock (p_I ckcnt/p_cowcnt != 0)
are guaranteed to be held in nenory, but can still be rel ocated
providing the SE_EXCL | ock can be obtai ned.

The P_NORELOC bit in the page_t.p_state field is provided for use by
t he pI atform specific code in managi ng pages when the PG NORELOC
hint is used.

Menory del ete and page | ocki ng.

The set of all usable pages is managed using the global page list as
inpl emented by the menseg structure defined below. Wen nenory is added
or deleted this list changes. Additions to this list guarantee that the
list is never corrupt. In order to avoid the necessity of an additional
lock to protect against failed accesses to the nenseg bei ng del eted and,
nore inmportantly, the page_ts, the nenmseg structure is never freed and the
page_t virtual address space is remapped to a page (or pages) of

zeros. |If a page_t is manipulated while it is p_selock’d, or if it is
locked indirectly via a hash or freelist lock, it is not possible for
menory delete to collect the page and so that part of the page list is
prevented from being deleted. If the page is referenced outside of one
of these locks, it Is possible for the page_t being referenced to be

del eted. Exanples of this are page_t pointers returned by

page_nunt opp_nol ock, page_first and page_next. Providing the page_t

new usr/src/ uts/comon/ vni page. h

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/

is re-checked after taking the p_selock (for p_vnode != NULL), the
remapping to the zero pages will be detected.

Page size (p_szc field) and page | ocking.

p_szc field of free pages is changed by free |ist manager under freelist
locks and is of no concern to the rest of VM subsystem

p_szc changes of allocated anonynous (swapfs) can only be done only after
exclusively locking all constituent pages and calling hat_pageunl oad() on
each of them To prevent p_szc changes of non free anonynous (swapfs) |arge
pages it's enough to either | ock SHARED any of constituent pages or prevent
hat _pageunl oad() by hol ding hat level lock that protects mapping lists (this
method is for hat code only)

To increase (pronpte) p_szc of allocated non anonynous file system pages
one has to first lock exclusively all involved constituent pages and call
hat _pageunl oad() on each of them To prevent p_szc pronpte It’s enough to
either | ock SHARED any of constituent pages that will be needed to nake a
| arge page or prevent hat_pageunl oad() by hol ding hat |evel |ock that
protects mapping lists (this nethod is for hat code only).

To decrease (denpote) p_szc of an allocated non anonynous file systemlarge
page one can either use the same nethod as used for changeing p_szc of
anonynous | arge pages or if it's not possible to lock all constituent pages
exclusively a different nethod can be used. In the second nethod one only
has to exclusively |l ock one of constituent pages but then one has to
acquire further locks by calling page_szc_| ock() and

hat _page_denote(). hat_page_denote() acquires hat |evel |ocks and then
denotes the page. This nmechanismrelies on the fact that any code that
needs to prevent p_szc of a file systemlarge page from changeing either
locks all constituent |arge pages at |east SHARED or |ocks sone pages at

| east SHARED and cal | s page_szc_l ock() or uses hat |evel page | ocks.
Denotion using this nmethod is inplemented by page_denote_vp_pages().

Pl ease see comments in front of page_denote_vp_pages(), hat_page_denote()
and page_szc_l ock() for nore details.

Lock order: p_selock, page_szc_lock, ph_nutex/vph_nutex/freelist,
hat |evel |ocks.

typedef struct page {

u_of fset _t p_of fset; /* offset into vnode for this page */
struct vnode *p_vnode; /* vnode that this page is named by */
/*

#endi f

sel ock_t p_sel ock; shar ed/ excl usi ve | ock on the page */
#if defined(_LP64)

uint_t p_vpnref; /* vpmref - index of the vpmap_t */

struct page *p_hash; /* hash by [vnode, offset] */

struct page *p_vpnext ; /* next page in vnode |ist */

struct page *p_vpprev; /* prev page in vnode list */

struct page *p_next; /* next page in free/intrans lists */

struct page *p_prev; /* prev page in free/intrans lists */

ushort _t p_I ckent; /* nunber of |ocks on page data */

ushort _t p_cowcnt ; /* nunber of copy on wite lock */

kcondvar _t p_cv; /* page struct’s condition var */

kcondvar _t p_io_cv; /* for iolock */

uchar _t p_iolock_state; /* replaces p_iolock */

vol atile uchar_t p_szc; /* page size code */

uchar _t p_fsdata; /* file system dependent byte */

uchar _t p_state; /* p_free, p_noreloc */

uchar _t p_nrm /* non-cache, ref, nod readonly bits */

#i f defined(__sparc)

uchar _t p_vcol or; /* virtual color */

521 #el se

new usr/ src/ uts/comon/ vni page. h

522
523
524
525
526
527

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

uchar _t p_enbed;
#endi f

uchar _t p_i ndex;

uchar _t p_toxic;

voi d *p_mappi ng;

pfn_t p_pagenum

uint_t p_share;
#if defined(_LP64)

uint_t p_shar epad;
#endi f

uint_t p_sl ckent;
#if defined(__sparc)

uint_t p_kpnref;

struct kpne *p_kpnel i st;
#el se

/* index of entry in p_map when

uint_t p_mentry;
#endi f
#if defined(_LP64)

kmut ex_t p_il ock;
#el se

ui nt 64_t p_nsresv_2;
#endi f
} page_t;

__unchanged_portion_omtted_

8
/* x86 - changes p_mapping & p_index */
* MPSS mapping info. Not used on x86 */
* page has an unrecoverable error */
* hat specific translation info */
* physical page nunber */
/* nunber of translations */
/* pad for growi ng p_share */
/* nunber of softlocks */

/* nunber of kpm napping sharers */
/* kpm specific mapping info */

p_enbed is set */

/* protects p_vpnref */

/* page allocation debugging */

