new usr/src/uts/arm6/bcn2835/m /1 ocore.s 1

R R R R

811 Sat Feb 7 18:57:48 2015
new usr/src/uts/arnmvé/ bcn2835/ni /1 ocore.s
arnmvé: bcn2835 & qvpb have nearly identical |ocore _start
I't makes sense to common-ize _start for all arnv6é machines. They will all
have to do the same basic setup. |If there is any nachine specific setup
they need to do, they can do so in the new _mach_start function.

hkkkkkkkkkkkkkkhkkhkk kR hkkhkhkhkkkkkkkkkkkkkk kX ok k kR Kk ok k ok k ok k k%

1/*

=
QOWONOUTAWN
* ok Ok ok k% k%

12 /*
13 *
14 =
15 */

This file and its contents are supplied under the terms of the
Conmmon Devel opment and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at

http://ww.illunps.org/license/ CODL.
/

Copyri ght 2013 (c) Joyent, Inc. Al rights reserved.
Copyright 2015 (c) Josef 'Jeff’ Sipek <jeffpc@ osefsipek.net>

17 #include <sys/asm|inkage. h>
18 #i ncl ude <sys/machparam h>
19 #incl ude <sys/cpu_asm h>

21 /*

IN
hrg
EE I S R R I R I S I R T R R

22 *
*/

ENTRY(_nach_start)

Every story needs a beginning. This is ours.

We are in a prinordial world here. The BMC2835 is going to cone al ong and
boot us at _start. Normally we would go ahead and use a main() function, but
for now, we’'ll do that ourselves. As we’'ve started the world, we also need to
set up a few things about us, for exanple our stack pointer. To help us out,
it’s useful to remenber the rough nenory map. Renenber, this is for physcial
addresses. There is no virtual nenory here. These sizes are often manipul ated
by the 'configuration’ in the bootl oader.

0000000000000 + <---- Max physical menory
fooocccoococooanoo +
/0
Peri pheral s
e + <---- |/0O base 0x20000000 (corresponds to 0x7E000000)
Mai n
Menory
Focccocscscmssoss + <---- Top of SDRAM
VC
SDRAM
feccoosscccooooss + <---- Split deternined by bootloader config
ARM
SDRAM

new usr/src/uts/arm6/bcn2835/m /1 ocore.s

111

113
114
115
116

* ok Ok ok % Ok b F o
-~

———————————————— + <---- Bottom of physical nmenory 0x00000000

Wth the Raspberry Pi Mdel B, we have 512 MB of SDRAM That neans we have a
range of addresses from [0, 0x20000000). |f we assume that the m ni num amount
of DRAMis given to the GPU - 32 MB, that neans we really have the foll ow ng
range: [0, 0x1e000000).

By default, this binary will be |oaded i nto 0x8000. For now, that means we

set our initial stack to 0x10000000.

Recal | that _start is the traditional entry point for an ELF binary.
&/

ENTRY(_start)

I dr sp, =tOstack

I dr r4, =DEFAULTSTKSZ
add sp, r4

bic sp, sp, #Oxff

/*

* establish bogus stacks for exceptional CPU states, our exception
* code shoul d never make use of these, and we want |oud and vi ol ent
* failure should we accidentally try.

*/

cps #(CPU_MODE_UND)
nov sp, #-1
cps #(CPU_MODE_ABT)
mov sp, #-1
cps #(CPU_MODE_FI Q
nov sp, #-1
cps #(CPU_MODE_I RQ
nmov sp, #-1
cps #(CPU_MODE_SVCO)

/* Enabl e hi ghvecs (noves the base of the exception vector) */

nrc pl5, 0, r3, cl, cO,
nmv r4, #1

| sl r4, r4d, #13

orr r3, r3, r4

ner pl5, 0, r3, cl1, cO, O

/* Enabl e access to pl0 and pll (privileged node only) */
nrc pl5, 0, r0, c1, cO0, 2

orr r0, #0x00500000
ner pl15, 0, r0, cl1, cO, 2
bx ria

SET_SI ZE(_mach_start)
bl _fakebop_start
SET_SI ZE(_start)

ENTRY(ar m r eg_r ead)
Idr r0, [rQ]

bx Ir

SET_SI ZE(ar m r eg_r ead)

ENTRY(armreg_wite)
str rl, [rO]

bx Ir

SET_SI ZE(armreg_wite)

new usr/src/uts/arnv6/ m/glocore.s

R R R R

4958 Sat Feb 7 18:57:48 2015
new usr/src/uts/arnv6/ m/glocore.s
arnmvé: bcn2835 & qvpb have nearly identical l|ocore _start
I't makes sense to common-ize _start for all arnv6é machines. They will all
have to do the same basic setup. |If there is any nachine specific setup
they need to do, they can do so in the new _mach_start function.
IR R R R R R R R R R R RS R R R RS RS E R E SRR R EREEREEREEEEEEEEEE]

1/*
* This file and its contents are supplied under the ternms of the
Conmmon Devel opment and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CODL.

/

=
QOWONOUTAWN
* ok Ok ok k% k%

12 /*

13 * Copyright 2013 (c) Joyent, Inc. Al rights reserved.

14 * Copyright (c) 2015 Josef 'Jeff’ Sipek <jeffpc@ osefsipek.net>
*
/

17 #include <sys/asm|inkage. h>
18 #i ncl ude <sys/machparam h>
19 #incl ude <sys/cpu_asm h>

21 #include "assymh"

23 /*

24 * Every story needs a beginning. This is ours.

25 *

23 #if defined(__lint)

27 | *

28 * Each of the different machines has its own locore.s to take care of getting
29 * the machine specific setup done. Just before junping into fakebop the
30 * first tinme, we call this nmachine specific code.

31 */

25 #endi f

33 /*

34 * W are in a prinordial world here. The |oader is going to conme al ong and
35 * boot us at _start. As we've started the world, we also need to set up a
36 * few things about us, for exanple our stack pointer. To help us out, It’'s
37 * useful to renmenber what the |oader set up for us:

38 *

39 * - unaligned access are allowed (A =0, U= 1)

40 * - virtual nenory is enabled

41 = - we (unix) are mapped right were we want to be

42 * - a UART has been enabl ed & any nenory mapped regi sters have been 1:1
43 = mapped

44 = - ATAGs have been updated to tell us what the mappings are

45 * - |/D L1 caches have been enabl ed

28 * Each of the different machines has its own |locore.s to take care of getting
29 * us into fakebop for the first time. After that, they all return here to a
30 */generic locore to take us into msetup and then to main forever nore.

46 *

48 I*

49 * External globals

50 */

51 .globl _locore_start

52 .globl nlsetup

53 .globl sysp

new usr/src/uts/arnv6/ m/glocore.s

54
55
56

59
60

101
102

.gl obl bootops
. gl obl boot opsp
.globl toO
.data
.comm tOstack, DEFAULTSTKSZ, 32
.comm tO, 4094, 32
/*
* Recall that _start is the traditional entry point for an ELF binary.
*/
ENTRY(_start)
| dr sp, =tOstack
I dr r4, =DEFAULTSTKSZ
add sp, r4
bi c sp, sp, #Oxff
/*
* establish bogus stacks for exceptional CPU states, our exception
* code shoul d never make use of these, and we want |oud and viol ent
* failure should we accidentally try.
*/
cps #(CPU_MODE_UND)
nmv sp, #-1
cps #(CPU_MODE_ABT)
nov sp, #-1
cps #(CPU_MODE_FI Q
nmv sp, #-1
cps #(CPU_MODE_| RQ
nov sp, #-1
cps #(CPU_MODE_SVC)
/* Enabl e highvecs (noves the base of the exception vector) */
nrc pl5, 0, r3, cl1, cO,
nmv r4, #1
I sl r4, rd, #13
orr r3, r3, r4
ncr pl5, 0, r3, c1, cO, O
/* invoke machi ne specific setup */
bl _mach_start
bl _fakebop_start
SET_SI ZE(_start)
#endif /* | codereview */

#if defined(__lint)

104 /* ARGSUSED */

105 voi d

106 _locore_start(struct boot_syscalls *sysp, struct bootops *bop)

107 {}

109 #el se /* __lint */

111 /*

112 * We got here from _kobj_init() via exitto(). W have a few different
113 * tasks that we need to take care of before we hop into nlsetup and
114 * then nmain. We're never going back so we shouldn’t feel conpelled to
115 * preserve any registers.

116 *

117 * o Enable our I/D caches

118 * 0 Save the boot syscalls and bootops for |ater

119 * 0 Set up our stack to be the real stack of tOstack.

new usr/src/uts/arnv6/ m/glocore.s

120 * o Save t0 as curthread

121 * 0 Set up a struct REGS for mnlsetup

122 * o Make sure that we're 8 byte aligned for the call

123 */

125 ENTRY(_l ocore_start)

128 /*

129 * W’ ve been running in tOstack anyway, up to this point, but
130 * locore_start represents what is in effect a fresh start in the
131 * real kernel -- We'll never return back through here.

132 *

133 * So reclaimthose few bytes

134 */

135 I dr sp, =tOstack

136 I dr r4, =(DEFAULTSTKSZ - REGSI ZE)

137 add sp, r4

138 bic sp, sp, #Oxff

140 /*

141 * Save flags and argunents for potential debuggi ng

142 */

143 str r0, [sp, #REGOFF_RO]

144 str rl, [sp, #REGOFF_R1]

145 str r2, [sp, #REGOFF_R2]

146 str r3, [sp, #REGOFF_R3]

147 nrs r4, CPSR

148 str r4, [sp, #REGOFF_CPSR]

150 /*

151 * Save back the bootops and boot_syscalls.

152 */

153 I dr r2, =sysp

154 str ro, [r2]

155 | dr r2, =bootops

156 str rl, [r2]

157 | dr r2, =bootopsp

158 I dr r2, [r2]

159 str rl, [r2]

161 /*

162 * Set up our curthread pointer

163 */

164 I dr ro, =to

165 ner pl15, 0, r0, c¢13, cO, 4

167 I*

168 */Go ahead now and enable the L1 I/D caches.

169 *

170 nrc pl5, 0, r0, c1, cO, O

171 orr r0, #0x04 /* D-cache */

172 orr r0, #0x1000 /* 1-cache */

173 ner pl5, 0, r0, cl1, cO, O

175 /*

176 * mlsetup() takes the struct regs as an argunment. main doesn’t take
177 * any and shoul d never return. Currently, we have an 8-byte aligned
178 * stack. We want to push a zero frame pointer to term nate any
179 * stack wal king, but that would cause us to end up with only a
180 * 4-pbyte aligned stack. So, to keep things nice and correct, we
181 * push a zero value twice - it's sinmlar to a typical function
182 * entry:

183 * push { r9, Ir }

184 */

185 nmv r9, #0

new usr/src/uts/arnv6/ m/glocore.s

186 push {r9} /* link register */
187 push {ro} /* franme pointer */
188 nov r0, sp

189 bl m set up

190 bl nai n

191 /* NOTREACHED */

192 I dr r0,=__return_frommin
193 I dr ro,[ro0]

194 bl pani c

195 SET_SI ZE(_| ocore_start)

197 __return_from main:

198 .string "main() returned"

199 #endif /* __lint */

201 ENTRY(ar m reg_r ead)

202 Idr r0, [rQ]

203 bx Ir

204 SET_SI ZE(arm r eg_r ead)

206 ENTRY(armreg_wite)

207 str rl, [rO]

208 bx Ir

209 SET_SIZE(armreg_wite)

210 #endif /* | codereview *J

new usr/src/uts/arnv6/ qvpb/m /Il ocore.s 1

R R R R

697 Sat Feb 7 18:57:48 2015
new usr/src/uts/arm6/ qvpb/ m /1 ocore.s

arnmvé: bcn2835 & qvpb have nearly identical
It makes sense to common-ize _start for all
have to do the same basic setup.
they need to do,

| ocore _start

arnvé machines. They will all
If there is any machine specific setup
they can do so in the new _mach_start function.

hkkkkkkkkkkkkkkhkkhkk kR hkkhkhkhkkkkkkkkkkkkkk kX ok k kR Kk ok k ok k ok k k%

1

=
QOWONOUTAWN

/*

* This file and its contents are supplied under the ternms of the

* Common Devel opnent and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terns of version
* 1.0 of the CDDL.

*

* Afull copy of the text of the CDDL should have acconpanied this
* source. A copy of the CDDL is also available via the Internet at
* http://ww.illunps.org/license/ CODL.

*/

/*

* Copyright 2013 (c) Joyent, Inc. Al rights reserved.

* Copyright 2015 (c) Josef 'Jeff’ Sipek <jeffpc@ osefsipek.net>
#endif /* | codereview */

*/

#i ncl ude <sys/asm | inkage. h>

#i ncl ude <sys/ machparam h>
#i ncl ude <sys/cpu_asm h>

/*

*

® Ok ok ok ok Rk Ok Ok R b Sk OF 3k R R b R ok Sk % R % OF % b % o

ENTRY(_nmach_start)

/* nothing to do */
bx ria

SET_SI ZE(_mach_start)

Every story needs a beginning. This is ours.
*/

We are in a prinordial world here. The BMC2835 is going to cone al ong and
boot us at _start. Normally we would go ahead and use a main() function, but
for now, we’'ll do that ourselves. As we’'ve started the world, we also need to
set up a few things about us, for exanple our stack pointer. To help us out,
it’s useful to remenber the rough nenory map. Renenber, this is for physcial
addresses. There is no virtual nenory here. These sizes are often manipul ated
by the 'configuration’ in the bootl oader.

T S e + <

Max physical nenory

/0
Peri pheral s

e eeemeeeao + <---- |/0 base 0x20000000 (corresponds to 0x7E000000)
Mai n
Menory
PR + <---- Top of SDRAM
VC
SDRAM
fcccoosscccooosss + <---- Split deternined by bootloader config

new usr/src/uts/arnv6/ qvpb/m /Il ocore.s

| *

*

® ok Sk Ok ok ok R bk Ok ok % b ¥
-~

Recal |
S

>
2

Bot t om of physical nmenory 0x00000000

Wth the Raspberry Pi Mdel B, we have 512 MB of SDRAM That neans we have a
range of addresses from [0, 0x20000000). |f we assume that the m ni num amunt
of DRAMis given to the GPU - 32 MB, that neans we really have the foll ow ng
range: [0, 0x1e000000).

By default, this binary will be |oaded i nto 0x8000. For now, that neans we
w il set our initial stack to 0x10000000.

that _start is the traditional entry point for an ELF binary.
ENTRY(_start)

I dr sp, =tOstack

Idr r4, =DEFAULTSTKSZ

add sp, r4

bic sp, sp, #Oxff

/*

* establish bogus stacks for exceptional CPU states, our exception
* code shoul d never make use of these, and we want |oud and vi ol ent

* failure should we accidentally try.
*/

cps #(CPU_MODE_UND)
nmov sp, #-1
cps #(CPU_MODE_ABT)
nmov sp, #-1
cps #(CPU_MODE_FI Q
nmov sp, #-1
cps #(CPU_MODE_I RQ
nmov sp, #-1
cps #(CPU_MODE_SVCO)

/* Enabl e hi ghvecs (noves the base of the exception vector) */
nrc pl5, 0, r3, cl, cO,

nmov r4,

| sl r4, rd, #13

orr r3, r3, r4

ner pl5, 0, r3, cl1, cO, O

bl _fakebop_start
SET_SI ZE(_start)

ENTRY(ar m r eg_r ead)
Idr r0, [rQ]

bx Ir

SET_SI ZE(ar m r eg_r ead)

ENTRY(armreg_wite)
str rl, [rO]

bx Ir
SET_SIZE(armreg_wite)

